Instrumentation for Beam Experiments

Peter Cameron for the HF Instrumentation Group

How we understand our Job

- Understand what needs to be measured
- Understand what can be measured
- Build the instrument
- Interface the instrument to the Control System
- Develop users among the AP and Operator communities
 - During commissioning
 - During beam experiments
 - During normal operations
- Iterate

Outline by Instrument

- BPM system
- PLL
- LF Schottky
- HF Schottky
- Quadrupole Monitor
- Emittance (Roger Connolly) IPM, Schottky, QMM, moveable BPM, wire scanner?,...

BPMs – the competition

- The workhorse
 - Well integrated into the Control System
 - ~ 600 planes, TBT data on a single bunch, million turns on 8 planes
 - Improved timing (auto-time at inj), auto-gains, reliability analysis,...
 - Lots of AP horsepower, permits local corrections,...
- On the horizon (January? February?) 'SNS' BPM
 - Custom AFE/Digitizers/FPGA/PCI interface/timing decoder
 - Clocked at 3x 28MHz RF (4x?), pre-processing in FPGA
 - 'continuous' TBT data for every bunch? ~10MB/sec to PCI
 - Sum signal is 'DCCT/WCM'? 'WCCT'? Longit and transverse instab?
 - Controls Interface? LabVIEW for now?

p - passive	WCM/	BPM	IPM	HF	LF	Spectrum	QMM	INJ	PLL	BTF	AC	ARTUS	BLM
b - bkgrnd	DCCT			Sch	Sch	Analyzer		Osc		non-res	Dipole		
a - active										PUE			
tune		р		р	р	р		q	b		a, b	а	
coupling		р		р	р	р		q	b		a, b	а	
chrom		head-tail		р	р	р		р	b			а	
β, D		р						b			a, b	a	
emittance	р	moveable	р	р	р	р	р						
Luminosity	р	р							?				
IR correct		р		р	р				b				
non-lin res	р	р	р	р	р				?		a, b		а
multipoles		р									a, b	а	
triplet roll		р							b				
sext calib		р							b				
dyn aper		р	р	?	?				b		a, b	а	а
halo	р	р	р						?				а
beam-beam	р	M turn	р	?	?		?		b		a, b		
working pt	р			?	?				a?				а
e-cloud				р	р				b			а	
IBS	р		р	?	?								
Instab		head-tail		р	р	р							
alpha one	р			?	?								
echo/diff	р	M turn	р	?	?		?						а
impedance		moveable		р	р	р	р		b	b		а	
	Beam Experiments Workshop 16 Oct 2003											5	

Tune

- HFS Schottky
 - Linewidth at injection and store
 - Especially useful at transition
 - Motion control, improve S/N on local oscillator, improved DAQ
- Usefulness of LF Schottky w/ gold beams
 - For now, move to DSA's
 - Parallel HFS when time permits
 - Include tune data in GPM, archive
- MCR display with cursors for both. LabVIEW? App?
- PLL motion control, improved S/N on LO, BW

Coupling

- Schottky passive
 - For free from LFS, more difficult from HFS
 - Need GPM, include in Schottky
 - Motion control
 - Improved S/N
- PLL skew quad modulation (Roser)
 - First efforts during last run's Beam Experiments
 - Small (~10-4) tune modulations give good signal
 - Supplement to Artus/BPM method when beam is kicked
 - · Gives coupling when beam is not kicked

Chromaticity – linear, non-lin, skew

- Linear
 - For free from LFS, more difficult from HFS
- Non-linear
 - · Primarily PLL, due to sensitivity
- Skew Schottky's measure observables (eigenstates)
 - LFS overlap generally not a problem, can measure H and V seperately
 - HFS as long as coupling keeps other lin >3dB below, can measure seperately
- A thought modulate PLL phase to measure linewidth

Non-linear chromaticity – .5Hz, .4mm

Chromaticity

Chromaticity thru an 8hr store from Schottky

Beam Experiments Workshop

Chromaticity from kicked and PLL tunes

Fit Dependence of Chromaticity

Beam-Beam

- Tools include HF Schottky, LF Schottky, Artus, PLL
- PLL measures incoherent tune (?)
- Short range beam-beam is incoherent
- Long range is coherent
- Beam steering to separate?
- Crab crossings mix short and long range
- Uncogged maximizes sensitivity for PLL
- Luminosity use beam-beam transfer function?

Beam-Beam

- Tools include HF Schottky, LF Schottky, Artus, PLL
- PLL measures incoherent tune (?)
- Short range beam-beam is incoherent
- Long range is coherent
- Beam steering to separate?
- Crab crossings mix short and long range
- Uncogged maximizes sensitivity for PLL

Island at 2/9 in RHIC?

Kickers off

Position dependence of excitation frequency?

resonance compensation?

Transverse Impedance

- Narrowband
 - PLL BTF uses resonant pickup, limited to ~245MHz
 - Incoherent tune has contribution from impedance
- Broadband
- With narrowband swept filter approach, losing the 20dB of gain from resonant pickup is acceptable
- Regular RHIC BPM is bolted to resonant BPM for centering. Use this pickup to measure broadband transverse impedance

Spectrum Analyzer

- We have modern state-of-the-art HP spectrum analyzer, LAN capable
- Connect to non-resonant moveable BPM? Buttons?
- Real-time transverse spectra available in MCR
- HP mux
- LabVIEW Interface for now

Outline by Experiment/Measurement

- Coupling Skew quad mod, Line strengths (transition HFS)
- LFS tune, coupling, spectral display (need lo)
 - Tune display ala FNAL 21.4 pickup (cursors, both real time and on archive...)
- Chrom Non-lin HFS lineshape, phi mod PLL
- Skew Chrom
- Beam-beam coh vs incoh, Lumi monitor
- MMB exp
- QTF
- IR correction
- Resonance compensation, Halo
- Echos, IBS,...
- Ampl dep tune shift pll tune/I vs excitation nonlinearities
- Impedance shift of incoherent tune with beam steering? No, bunch intensity.

Outline by Experiment/Measurement

- Coupling Skew quad mod, Line strengths (transition HFS)
- LFS tune, coupling, spectral display (need lo)
 - Tune display ala FNAL 21.4 pickup (cursors, both real time and on archive...)
- Chrom Non-lin HFS lineshape, phi mod PLL
- Skew Chrom
- Beam-beam coh vs incoh, Lumi monitor
- MMB exp
- QTF
- IR correction
- Resonance compensation, Halo
- Echos, IBS,...
- Ampl dep tune shift pll tune/I vs excitation nonlinearities
- Impedance shift of incoherent tune with beam steering? No, bunch intensity.

shift

W. Fischer et al

16hr store

